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Abstract. Cross-dock has been a novel logistic approach to effectively consolidate and distribute multiple products in lo-
gistics networks. Location selection of cross-docking centers is a decision problem under different conflicting criteria. The 
decision has a vital part in the strategic design of distribution networks in logistics management. Conventional methods 
for the location selection of cross-docking centers are insufficient for handling uncertainties in Decision-Makers (DMs) or 
experts’ opinions. This study presents a new Multi-Criteria Group Decision-Making (MCGDM) model, which applies the 
concept of compromise solution under uncertainty. To address uncertainty, Interval-Valued Intuitionistic Fuzzy (IVIF) sets 
are used. In this paper, first an IVIF-weighted arithmetic averaging (IVIF-WAA) operator is used in order to aggregate all 
IVIF-decision matrices, which were made by a team of the DMs into final IVIF-decision matrix. Then, a new Collective 
Index (CI) is developed that simultaneously regards distances of cross-docking centers as candidates from the IVIF-ideal 
points. Finally, the feasibility and practicability of proposed MCGDM model is illustrated with an application example on 
location choices of cross-docking centers to the logistics network design.

Keywords: multiple cross-docks, location evaluation and selection, logistics networks, multi-criteria decision-making, 
group decision process, interval-valued intuitionistic fuzzy sets.

Introduction

Cross-docking as a modern logistic approach has high 
potentials to decrease transportation costs as well as 
delivery time without increasing the inventory. Indeed, 
cross-docking can be the direct movement of containers 
from receiving to shipping with minimum dwell time in 
between. This approach has crucial impacts on the logis-
tics networks, including just-in-time, zero inventories, 
electronic data exchange and different drop ship methods 
(Kellar et  al. 2016; Mousavi, Vahdani 2017). In the last 
decade, the approach has been applied to several logis-
tics networks, for instance, Wal-Mart’s logistics network 
and United States’ Postal Service with remarkable results 
(Alkhedher 2006; Yan, Tang 2009; Mousavi et al. 2014a; 
Khalaj et al. 2014; Maknoon et al. 2016). 

In today’s competitive environment, appropriate cross-
docks location has been taken as the main critical activity 
for effective distribution systems in the logistics manage-
ment (Ladier, Alpan 2016). Effective movement of prod-
ucts from suppliers or providers through cross-docking 
distribution centers to retailers or customers is very im-
portant in the logistics networks (Mousavi et al. 2014b). 
Consequently, the utilization of several cross-docking 
centers is more and more vital.

In logistics studies, some papers have been published 
on the location problem of distribution centers and ware-
houses; for instance, Vlachopoulou et al. (2001) proposed 
geographic-DSS for the evaluation of warehouse sites to 
identify the suitable alternative. Lee (2005) presented 
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fuzzy Multi-Criteria Decision-Making (MCDM) meth-
od to solve the distribution center selection problem in 
a fuzzy environment. Ou and Chou (2009) took evalu-
ation criteria of international distribution centers into 
account and introduced a fuzzy rating system. Demirel 
et al. (2010) considered the warehouse location selection 
under multiple quantitative and qualitative criteria by us-
ing Choquet integral. Özcan et al. (2011) compared three 
MCDM methods and grey theory for the application to 
the warehouse selection problem.

There are a few papers regarding the optimal cross-
dock location in the logistics networks. Ratliff et al. (1998) 
formulated an integer-programming model by allocat-
ing the required truckloads to the cross-dock routes to 
minimize the number of truck miles. Jayaraman and Ross 
(2003) solved the facility location problem by cross-docks 
to reduce the costs related to opening facilities and trans-
portation. The parameters regarding the performance of 
a cross-dock investigated by Bartholdi and Gue (2003), 
which can be used for designing the cross-dock layout and 
can be considered as objectives in optimizing the utility 
of cross-dock facilities. Makui et  al. (2006) extended a 
mathematical programming with multi-objective location 
allocation for cross-docking centers and used a genetic al-
gorithm as a solving approach. Ross and Jayaraman (2008) 
assessed some control mechanisms based on their previ-
ous study in Jayaraman and Ross (2003), and indicated 
several experimental convergences. 

The review of the cross-docking published papers in-
dicates that all of the above literature applied crisp val-
ues (i.e., deterministic model) to descript the experts or 
Decision-Makers (DMs)’ opinions on cross-docking can-
didates; however, in practice this is seldom the case in 
the logistics environment. Different types of uncertainty 
and imprecision (i.e., fuzziness) often are available in the 
decision-making. Due to these uncertainties in real-life 
situations, the experts or DMs are often unsure of their 
preferences during the cross-docking location selection 
processes. It is mainly because the information, including 
their preferences over candidates and the relative impor-
tance of criteria, is incomplete, uncertain and imprecise. 
Moreover, decision criteria are often subjective and quali-
tative in the strategic decision-level, and thus it may be 
difficult for the DMs to describe judgments about candi-
dates with precise numerical values.

This study takes a new decision-making approach into 
account under uncertainty to address location problem of 
cross-docks. To cope with uncertainty, new extension of 
fuzzy sets, namely Interval-Valued Intuitionistic Fuzzy 
(IVIF) set, is taken into consideration in this study. In the 
last two decades, most decision studies under uncertainty 
considered the traditional fuzzy theory developed by Za-
deh (1965). In comparison with Zadeh’s fuzzy sets, Intui-
tionistic Fuzzy Sets (IFSs) proposed by Atanassov (1986) 
perform well and are more useful to address uncertainty 
and vagueness. Hence, experts can employ IFSs, par-
ticularly IVIF sets introduced by Atanassov and Gargov 
(1989) to describe the information of candidates versus 

multi-criteria for decision-making problems under in-
complete and uncertain environment. The IVIF sets can 
effectively consider the uncertainty and fuzziness in in-
formation and DMs’ judgments (e.g., Atanassov 1994; Xu 
2007a, 2007b; Wei, Wang 2007; Park et al. 2011; Hashemi 
et al. 2014). Recently several multi-criteria decision-mak-
ing methods were extended for Group Decision-Making 
(GDM) process problems in an uncertain environment 
(e.g., Razavi Hajiagha et al. 2013; Zavadskas et al. 2014, 
2015, 2018a, 2018b; Chen 2015, 2016; Xue et  al. 2016; 
Prentkovskis et al. 2018; Hashemi et al. 2016; Kahraman 
et al. 2017; Stević et al. 2017). A number of Multi-Criteria 
Group Decision-Making (MCGDM) methods based on 
intuitionistic fuzzy operators were suggested (Rong et al. 
2016; Liu et al. 2016; Li et al. 2016), a linear programming 
technique for MCGDM problems with IVIF information 
was evolved (Razavi Hajiagha et al. 2015). Taking into ac-
count the increased interest, a special issue on IFS theory 
and its application in economy, technology and manage-
ment was published (Liu 2016). 

This study presents a novel Interval-Valued Intuition-
istic Fuzzy Multi-Criteria Group Decision-Making (IVIF-
MCGDM) model by the concept of compromise solu-
tion – i.e., Technique for Order Performance by Similarity 
to Ideal Solution (TOPSIS) method – to handle the Cross-
Docking Centers Location Selection Problem (CDLSP), 
under uncertainty. Characteristics of candidates and deci-
sion criteria are determined by linguistic terms and then 
represented by IVIF-numbers through the GDM. The 
model creates more generality and flexibility to express 
the uncertainties according to a lack of data in the tradi-
tional decision methods. Furthermore, the model allows 
a team of DMs to express their degrees of membership in 
addition to their degree of non-membership in interval 
form while evaluating the weight of each criterion in the 
GDM process. 

In the IVIF-MCGDM model, in order to address the 
fuzziness of decision-making process, linguistic variables 
are applied. The information of the process is addressed 
by using IVIF-decision matrices. The Interval-Valued 
Intuitionistic Fuzzy Weighted Arithmetic Averaging 
(IVIF-WAA) operator is applied to aggregate all experts’ 
opinions for the performance values of cross-docks as 
candidates as well as the weight of each criterion. Then, 
two new basic IVIF-operations, namely subtraction and 
division, are presented to construct IVIF-ideal matrices in 
the assessment process. Finally, a new index is developed 
to rank each cross-docking center (candidate), which is 
based on a score function to measure IVIF-numbers and 
distances from IVIF-ideal solutions.

In summary, main novel characteristics of IVIF-MCG-
DM approach in cross-docking networks are as follows:

 – proposing a new MCGDM model based on the con-
cepts of the compromise solution and IVIF sets by 
employing linguistic terms, in which the performance 
ratings of each candidate in addition to the weight of 
each criterion are achieved by IVIF numbers;
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 – developing a new ranking index to distinguish can-
didates in IVIF forms for the ranking purpose by si-
multaneously constructing IVIF-ideal matrices;

 – applying novel operations on the IVIF sets (i.e., sub-
traction and division operations); 

 – furthermore, an application example is examined and 
solved to address the CDLSP in the logistics network 
design under uncertainty.

The remainder of this paper is organized as follows. 
In Section 1, the IVIF-MCGDM model is given. In Sec-
tion 2, an application example for the CDLSP is presented 
in detail. Discussions of results are presented in Section 3. 
Conclusions are reported in last section.

1. Proposed new IVIF-MCGDM model

Indices and sets:
h      – index of DMs;
i       – index of potential candidates;
j       –  index of evaluation attributes;
CD    – set of potential candidates, 

{ }= 1 2,  , ..., mCD CD CD CD
 
;

EA  –  set of evaluation attributes, 
{ }= 1 2,  , ..., nEA EA EA EA

 
;

TM – 
 
set of DMs, { }= 1 2,  , ..., lTM TM TM TM .

Parameters:  

ija
  

– lower bound of µ  of aggregated score ijx ;
*
ja

 
–  lower bound of µ  of positive-ideal solution;

−
ja

 
–  lower bound of µ  of negative-ideal solution;

( )h
ija –  lower bound of µ  of score ( )



h
ijx ;

ijb
 

–  upper bound of µ  of aggregated score ijx ;
*
jb

 
–  upper bound of µ  of positive-ideal solution;

−
jb

 
–  upper bound of µ  of negative-ideal solution; 

( )h
ijb –  upper bound of µ  of score ( )



h
ijx ;

ijc
 

–  lower bound of ν  of aggregated score ijx ;
*
jc

 
–  lower bound of ν  of positive-ideal solution; 

−
jc

 
–  lower bound of ν  of negative-ideal solution; 

( )h
ijc –  lower bound of ν  of score ( )



h
ijx ;

ijd
 

–  upper bound of ν  of aggregated score ijx ; 
*
jd
 

–  upper bound of ν  of positive-ideal solution; 
−
jd

 
–  upper bound of ν  of negative-ideal solution; 

( )h
ijd

 
–  upper bound of ν  of score ( )



h
ijx ; 

l  –  number of DMs;
m  –  number of potential candidates;
n  –  number of evaluation attributes;

−
ijns –  IVIF-distance between ijp  and −

 jp ;
ijp

 
–  IVIF-weighted aggregated score of the i-th potential

   candidate CDi with respect to the j-th evaluation 
   attribute EAj;


*
jp –  IVIF-positive-ideal solution;
−
 jp –  IVIF-negative-ideal solution;



*
ijps

 
– IVIF-distance between ijp  and *

jp ;
ijx

 
– IVIF-aggregated score of the i-th potential candidate  

  CDi with respect to the j-th evaluation attribute EAj;( )


h
ijx

 
– IVIF-score of the i-th potential candidates CDi  

  with respect to the j-th evaluation attribute EAj  
  provided by h-th DM; 
( )ξ h

 – IVIF-DM’s weight of h-th expert;
µ  – interval value of membership degree of IVIF  
  numbers;
ν  – interval value of non-membership degree of  
  IVIF numbers;
ϖ j  

– IVIF-aggregated weight of attribute j;
( )ϖ h
j  

– IVIF-weight of attribute j provided by h-th DM;
ω 1j  

– lower bound of µ  of aggregated weight ϖ j;
ω 3j  

– lower bound of ν  of aggregated weight ϖ j;
( )ξ1
h

 – lower bound of µ  of DM’s weight ( )ξ h ;
( )ξ3
h

 – lower bound of ν  of DM’s weight ( )ξ h ;
( )ξ2
h

 – upper bound of µ  of DM’s weight ( )ξ h ; 
( )ξ4
h

 – upper bound of ν  of DM’s weight ( )ξ h ;
( )ω 1
h

j  
– lower bound of µ  of weight ( )ϖ h

j ;
( )ω 3
k

j – lower bound of ν  of weight ( )ϖ h
j ;

ω 2j  
– upper bound of µ  of aggregated weight ϖ j;

ω 4j  
– upper bound of ν  of aggregated weight ϖ j;

( )ω 2
k

j – upper bound of µ  of weight ( )ϖ h
j ;

( )ω 4
k

j – upper bound of ν  of weight ( )ϖ h
j .

Decision variables:
≥ 0iCI  – final ranking index;

′κ ≥ 0ij  – max-separation measure of hi;
′χ ≥ 0ij  – min-separation measure of Ji;

h ≥ 0i  –  the first separation measure of final ranking  
    index;
J ≥ 0i  – the second separation measure of final ranking 
    index.

Proposed GDM problem under multi-criteria involves 
vague and uncertain data in the CDLSP. The characteristic 
of the candidate CDi is denoted by an IVIF set as follows:

( ) ( ){  = µ µ , , , , ,L U
i j i j i jCD EA  CD EA CD EA  ,

( ) ( ) } ν ν ∈ , , ,L U
i j i j jCD EA CD EA EA EA ,  (1)

where:

( ) ( )≤ µ + ν ≤0 , , 1U U
i j i jCD EA CD EA ;

( )µ ≥, 0L
i jCD EA ;

( )ν ≥, 0L
i jCD EA ;

=1,  ..., i m ;
=1, ..., j n.
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IVIF set value that can be a pair of intervals:
( ) ( )µ =,h

i jCD EA

( ) ( ) ( ) ( ) ( ) ( )   ν =      
, , , ,h h h hh

i jij ij ij ija b CD EA c d  

for ∈  jEA EA  is presented with:
( ) ( ) ( ) ( ) ( )   =       

, , ,h h h h h
ij ij ij ij ijx a b c d , 

where: ( ) ( ) 
  

,h h
ij ija b  and ( ) ( ) 

  
,h h

ij ijc d  depict the degrees 

that candidate CDi can satisfy and cannot satisfy the cri-
terion EAj by DM TMh (h = 1, …, l) respectively. 

Then, ( ) ( )
×

 =  
 

hh
ij

m n
X x  with DM (TMh) in form of an 

IVIF-decision matrix is achieved as below: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 11 12 1

2 21 22 2

1 2

n
h h h

n
h h h hh

ij n
m n

h h h
m m m mn

EA EA EA

CD x x x

X x CD x x x

CD x x x

×

 = = 
 







    



,

where: 
( ) ( ) ( ) ( ) ( )   =       11 11 11 11 11, , ,h h h h hx a b c d ;

( ) ( ) ( ) ( ) ( )   =       12 12 12 12 12, , ,h h h h hx a b c d ;

( ) ( ) ( ) ( ) ( )   =       1 1 1 1 1, , ,h h h h h
n n n n nx a b c d ;

( ) ( ) ( ) ( ) ( )   =       21 21 21 21 21, , ,h h h h hx a b c d ;

( ) ( ) ( ) ( ) ( )   =       22 22 22 22 22, , ,h h h h hx a b c d ;

( ) ( ) ( ) ( ) ( )   =       2 2 2 2 2, , ,h h h h h
n n n n nx a b c d ;

( ) ( ) ( ) ( ) ( )   =       1 1 1 1 1, , ,h h h h h
m m m m mx a b c d ;

( ) ( ) ( ) ( ) ( )   =       2 2 2 2 2, , ,h h h h h
m m m m mx a b c d ;

( ) ( ) ( ) ( ) ( )   =       
, , ,h h h h h

mn mn mn mn mnx a b c d .

Given the explanations, new IVIF-MCGDM approach 
has the following steps:

1) A team of the DMs (TMh) is formed to find the 
finest candidate by addressing the evolution factors. 

2) A DM’s weight is computed by linguistic terms and 
is then converted into IVIF-numbers: 
( ) ( ) ( ) ( ) ( )ξ = µ ξ ν ξ = ,h h h

( ) ( ) ( ) ( )   ξ ξ ξ ξ      1 2 3 4, , ,h h h h . 

3) Evaluation factors are distinguished for the CDLSP.

4) An evaluation factor’s weight by h-th DMs is ex-
pressed with a linguistic term and is converted into 
the IVIF number: 

    
( ) ( ) ( )

ω ωϖ = µ ν = ,
j j

h h h
j

    

( ) ( ) ( ) ( )   ω ω ω ω      1 2 3 4, , ,h h h h
j j j j . 

5) Aggregated IVIF weight of evaluation fac-
tor by IVIF-WAA operator (Xu, Chen 2007), 

( )ω ϖ ϖ ϖ  1 2, , .., lIVIFWAA , is calculated by: 

,
j jj ω ωϖ = µ ν =

   ω ω ω ω =   1 2 3 4, , ,j j j j

( ) ( ) ω

=

   − − ξ ⋅ω 
 

∏ 1 1
1

1 1 ,
hl

h h
j

h

( ) ( ) ω

=

  − − ξ ⋅ω 
  

∏ 2 2
1

1 1 ,
hl

h h
j

h

( ) ( ) ( ) ( ) ω

=

   ξ +ω − ξ ⋅ω 
 

∏ 3 33 3
1

,
hl

h h h h
j j

h

( ) ( ) ( ) ( ) ω

=

  ξ +ω − ξ ⋅ω 
  

∏ 4 44 4
1

hl
h h h h

j j
h

,  (2)

where: ( )ω = ω ω ω1 2, , ...,
T

l
T

 can be weight vector, 

ω ∈  0,  1h  , and 
=
ω =∑

1
1

l

h
h

.

6) Candidate’s score versus the chosen attribute can be 
assessed by DMs ( )  

 
h

ijx . 

7) Fuzzy score matrix is constructed ( )( )hX .
8) Aggregated IVIF decision matrix is constructed 

by opinions of DMs and the IVIF-WAA operator 
( ) ( ) ( )

ω
  
 
  

1 2, , ..., l
ij ij ijIVIFWAA x x x  by: 

= µ ν = ,
ij ijij x xx

    =   , , ,ij ij ij ija b c d

( ) ( ) ω

=

   − − ξ ⋅ 
 

∏ 1
1

1 1 ,
hl

h h
ij

h

a

( ) ( ) ω

=

  − − ξ ⋅ 
  

∏ 2
1

1 1 ,
hl

h h
ij

h

b

( ) ( ) ( ) ( ) ω

=

   ξ + − ξ ⋅ 
 

∏ 3 3
1

,
hl

h h h h
ij ij

h

c c

( ) ( ) ( ) ( ) ω

=

  ξ + − ξ ⋅ 
  

∏ 4 4
1

hl
h h h h

ij ij
h

d d ,  (3)

where: ( )ω = ω ω ω1 2, , ...,
T

l
T

 can be weight vector, 

 ω ∈ 0,1h , and 
=
ω =∑

1
1

l

h
h

.
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9) Weighted aggregated IVIF decision matrix is con-
structed with addressing factors’ weights as below:

×
 =  



ij m n
P p ,  (4)

    where:
= ϖ ⊗ =

 ij j ijp x  ω ⋅ ω ⋅ 1 2, ,j ij j ija b

 ω + −ω ⋅ ω + −ω ⋅ 3 3 4 4,j ij j ij j ij j ijc c d d .  (5)

10) IVIF ideal solutions, defined as *P  and −
P , are de-

termined by:

{ }= = =

 

* * * *
1 , ...,

T
j nP p p p

    ∈ ∈      
 max | , min |

T

ij ijii
p j B p j C ;  (6)

{ }− − − −= = =

 1 , ...,
T

j nP p p p

   ∈ ∈        
 min | , max |

T

ij iji i
p j B p j C ,  (7)

where: B can be benefit criteria; C can be cost cri-
teria. 

11) IVIF positive-ideal separation matrix ( )*PS  and 
negative-ideal separation matrix ( )−NS  are de-
fined as follows:

 = = 




* *
ijPS ps

 − − −
 − − − 
 
 − − − 

     



     



   

     



* * *
1 11 2 12 1
* * *
1 21 2 22 2

* * *
1 1 2 2

n n

n n

m m n mn

p p p p p p
p p p p p p

p p p p p p

  (8)

and
− − = = 


ijNS ns
− − −

− − −

− − −

 − − −
 − − − 
 
 − − − 

     



     



   

    



11 1 12 2 1

21 1 22 2 2

1 1 2 2

n n

n n

m m mn n

p p p p p p
p p p p p p

p p p p p p

.  (9)

12) Proposed Collective Index (CI) is calculated, with 
a score function by (Yu et al. 2012), for IVIF ideal 
separation matrices by the proposed following rela-
tion:
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where: the first summation denotes all j for which 
( )− > 0ijS ns  while ′κij  denote all ′j for which 
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where: the second summation denotes all j for 
which ( )− > 0ijS ns  while ′χij denote all ′j  for which 
( )− = 0ijS ns . 
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The proposed ranking index is finalized as below:

= h +Ji i iCI .  (13)

13) Priority of candidates is determined by the proposed 
CI. Most suitable candidate can here be distin-
guished according to smaller amounts of hi and Ji. 

2. Application of proposed approach

In an application example, an investor company per-
formed a feasibility study to locate an appropriate cross-
docks for logistics network design. Network under study is 
presented in Figure 1, including several suppliers or pro-
viders, cross-docking centers and retailers or customers. 

In order to properly address the location selection 
problem, it is necessary to regard various factors for the 
CDLSP in the feasibility study. Distinguishing potential 
centers (candidates) and the most suitable candidate of the 
one improve the company’s outcome in a strategic point 
of view. 

A three-level hierarchy decision process is described 
for the DMs as shown in Figure 2. In the first level, the 
overall goal of the CDLSP is depicted at the top level of 
hierarchy. In the second level, different main criteria are 
presented to obtain the overall goal in logistics network. 
Also, cross-docking center locations (candidates) are pro-
vided in the third level for the selection process. Following 
are selected criteria and their descriptions (e.g., Alkhedher 
2006; Ou, Chou 2009; Demirel et  al. 2010; Özcan et  al. 
2011): 

 – cross-docking capacity EA1: in the logistics man-
agement via a variety of products, the capacity of a 
cross-docking center is regarded as an important fac-
tor for the operational flow to operate properly; 

 – expansion possibility EA2: the expansion possibility 
is related to the architectural and layout factors of 
cross-docking center location; 

 – industrial laws and regulations EA3: this factor con-
tains the industrial regulations along with develop-
ment plans via the macro decision viewpoint; 

 – proximity to main retailers or customers EA4: con-
sidering high demands for products and services, top 
managers should evaluate a location for the cross-
docking center, which is near to main retailers or 
customers;

 – proximity to main suppliers or providers EA5: this 
factor can be defined as distances of the cross-
docking center location to main providers. This help 
the cross-docking perform the direct movement of 
containers (trucks) from receiving to shipping with 
minimum dwell time in between;

 – transportation and handling costs EA6: transporta-
tion and handling costs have impacts on the cross-
docking center location remarkably. Transportation 
costs can be altered by considering economic ap-
proach of regions, and related cross-docking trans-
portation modes. In addition, handling costs contain 
capital, human resource and equipment.

The relative importance of the chosen evaluation cri-
teria in addition to the experts are depicted by employ-
ing the linguistic variables defined in Table 1. Then, per-
formance ratings of the cross-docking candidates versus 
evaluation factors are presented in Table 2.

A group consisting of three supply chain managers 
denoted as TM1, TM2 and TM3 is made to carry out the 

Figure 1. Logistics network under study

Figure 2. Hierarchical of the CDLP
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assessment and to find the best location for the CDLSP. 
Since they do not have the same experiences in the com-
pany, each one is given a weight that is provided by IVIF-
numbers as shown in Table 3.

The six criteria are identified for the CDLSP that are 
denoted as EA1, EA2, …, EA5 and EA6. Also, four potential 
cross-docking center locations (candidates) are denoted 
as CD1, CD2, CD3, and CD4. The relative importance of 
each evaluation factor by team members is expressed and 
is converted into the IVIF numbers. Then, they are aggre-
gated by the IVIF-WAA, ( )ω ϖ ϖ ϖ  1 2,  ,  ...,  lIVIFWAA , by 
Equation (2) as shown in Table 4.

Fuzzy performance values of alternatives and corre-
sponding IVIF-numbers are assessed by three team mem-
bers while considering each evaluation criterion. Then, the 
IVIF rating matrix is presented for each team member as 
obtained in Table 5. Aggregated matrix is constructed by 
Equation (3). Obtained values based on the IVIF-WAA 
operator, ( ) ( ) ( )

ω
  
 
  

1 2, , ..., l
ij ij ijIVIFWAA x x x , are reported in 

Table 6. 
Aggregated IVIF matrix and weights of six evaluation 

factors are first computed. Then, the weighted IVIF matrix 
is established and given in Table 7. IVIF ideal solutions 
are determined according to the benefit criteria for the 
CDLSP in the application example.

IVIF ideal separation matrixes, 
*PS  and −

NS , are ob-
tained with Equations (8) and (9) as follows:

 
 

=  
 
  


*

0.0717 0.2125 0.1222 0.1802 0.3129 0.1298
0.0000 0.1535 0.1117 0.2565 0.2959 0.1139
0.0578 0.0000 0.0000 0.0000 0.0000 0.0000
0.1224 0.0151 0.0972 0.1766 0.3129 0.0380

PS ;

−

 
 

=  
 
  



0.0550 0.0000 0.0000 0.0955 0.0000 0.0000
0.1224 0.0737 0.0121 0.0000 0.0261 0.0180
0.0690 0.2125 0.1222 0.2565 0.3129 0.1298
0.0000 0.2009 0.0282 0.0992 0.0000 0.0958

NS .

Table 3. Weights of team members 

Decision-makers (experts) TM1 TM2 TM3

Linguistic variables I I M

IVIF numbers       0.60, 0.75 , 0.10, 0.20       0.60, 0.75 , 0.10, 0.20 0.30, 0.50 , 0.25, 0.45      

Notes: I – Important; M – Medium.

Table 4. IVIF importance of evaluation factors 

           Evaluation factors

Decision-makers 
(experts)

EA1 EA2 EA3 EA4 EA5 EA6

TM1 I M M VI I VI
TM2 I I I I I I
TM3 M I M I VI VI

Aggregated IVIF weight
  

  

0.5180, 0.6850 ,

0.1357, 0.2621

  

  

0.5180, 0.6850 ,

0.1357, 0.2621

  

  

0.4191, 0.6031 ,

0.1842, 0.3434

  

  

0.6825, 0.8158 ,

0.0794, 0.1587

  

  

0.6825, 0.8158 ,

0.0794, 0.1587

  

  

0.7480, 0.8643 ,

0.0630, 0.1260

Notes: I – Important; M – Medium; VI – Very Important.

Table 1. Linguistic variables to express weights of DMs  
and evaluation factors

Linguistic variables IVIF numbers

Very Important (VI)       0.80,0.90 , 0.05,0.10

Important (I)       0.60, 0.75 , 0.10, 0.20

Medium (M)       0.30, 0.50 , 0.25, 0.45

Unimportant (UI)       0.20, 0.35 , 0.45, 0.60

Very UnImportant (VUI)       0.00, 0.10 , 0.70, 0.90

Table 2. Linguistic variables for values of candidates

Linguistic variables IVIF numbers

Very Good (VG) /  
Very High (VH)

      0.80, 0.90 , 0.05, 0.10

Good (G) / High (H)       0.55, 0.70 , 0.10, 0.20

Medium Good (MG) / 
Medium High (MH)

      0.45, 0.60 , 0.15, 0.30

Fair (F) / Medium (M)       0.30, 0.50 , 0.20, 0.40

Medium Bad (MB) /  
Medium Low (ML)

      0.25, 0.40 , 0.35, 0.50

Bad (B) / Low (L)       0.10, 0.30 , 0.45, 0.60

Very Bad (VB) /  
Very Low (VL)

      0.00, 0.10 , 0.70, 0.90



Transport, 2019, 34(1): 30–40 37

The proposed index (i.e., CI) by values of hi, Ji and 
the score function of the IVIF-numbers are computed by 
Equations (10)–(13) and shown in Table 8. For instance, 
for the first candidate CD1 we have:

 h = + + = 
 

1
1

6
0.81511

0.0717 0.1802 1.8869 3.3928
0.0550 0.0955

and
(J = + + +1 0.0717 0.2125 0.1222

)+ + +
1
60.1802 0.3129 0.1298

 + + 
 

1
61 1

0.0550 0.0955
=0.81510.0550 2.8482.

Thus,

= h +J = + =1 1 1 3.3928 2.8482 6.2410CI .

As given in Table 8, the ranking order of four cross-
docking center locations is CD3, CD1, CD4 and CD2. Even-
tually, cross-docking center 3 CD3 after using the proposed 
IVIF-MCGDM model is chosen for the CDLSP. Regarding 
commercial software packages, it is worth to mention that 
the proposed model for the application example is coded 
by Visual Basic for Applications (VBA) in the spreadsheet 
software (i.e., Excel-based VBA macrocode). In addition, 
it can be performed by MATLAB software for the large-
sized problems.

3. Discussion of results

The results from the application for the CDLSP in this 
study illustrate that the presented IVIF-MCGDM ap-
proach is an adaptable and reasonable one under uncer-
tainty, which helps the committee members to effortlessly 
use IVIF-numbers to express their uncertain recognition 
about the degrees that the candidate satisfies and does 
not satisfy the location evaluation criterion. This study 

Table 5. Ratings of cross-docking candidates versus  
selected criteria

Evaluation 
factors

Cross-docking 
centers

Decision-makers (experts)

TM1 TM2 TM3

EA1

CD1 MH MH MH
CD2 H H H
CD3 MH MH H
CD4 M M MH

EA2

CD1 ML ML L
CD2 ML M M
CD3 H H MH
CD4 H MH H

EA3

CD1 MB G M
CD2 M G MB
CD3 VG G MG
CD4 M MG G

EA4

CD1 ML MH H
CD2 ML M ML
CD3 H VH MH
CD4 MH M M

EA5

CD1 M ML ML
CD2 ML M M
CD3 VH VH H
CD4 M ML ML

EA6

CD1 MG M MG
CD2 MG MG M
CD3 G G G
CD4 G G F

Notes: B – Bad; MB – Medium Bad; VB – Very Bad; F – Fair; 
G – Good; MG – Medium Good; VG – Very Good; H – High; 
MH – Medium High; VH – Very High; L – Low; ML – Medium 
Low; VL – Very Low; M – Medium.

Table 6. Aggregated IVIF matrix

                  Evaluation 
                      factors
Candidates

EA1 EA2 EA3 EA4 EA5 EA6

CD1

  

  

0.2275, 0.4040 ,

0.2715, 0.4920

  

  

0.1117, 0.2532 ,

0.4660, 0.6548

  

  

0.1968, 0.3706 ,

0.3160, 0.5250

  

  

0.1968, 0.3698 ,

0.3165, 0.5288

  

  

0.1361, 0.2953 ,

0.3905, 0.6093

  

  

0.1970, 0.3780 ,

0.2879, 0.5201

CD2

  

  

0.2790, 0.4726 ,

0.2272, 0.4171

  

  

0.1408, 0.3103 ,

0.3595, 0.5935

  

  

0.2020, 0.3807 ,

0.3010, 0.5139

  

  

0.1361, 0.2953 ,

0.3905, 0.6093

  

  

0.1408, 0.3103 ,

0.3595, 0.5935

  

  

0.2144, 0.3901 ,

0.2806, 0.5062

CD3

  

  

0.2366, 0.4185 ,

0.2618, 0.4768

  

  

0.2704, 0.4595 ,

0.2357, 0.4304

  

  

0.3296, 0.5237 ,

0.2153, 0.3958

  

  

0.3296, 0.5237 ,

0.2153, 0.3958

  

  

0.3911, 0.5905 ,

0.1898, 0.3528

  

  

0.2790, 0.4726 ,

0.2272, 0.4171

CD4

  

  

0.1653, 0.3509 ,

0.3052, 0.5499

  

  

0.2581, 0.4462 ,

0.2439, 0.4460

  

  

0.2064, 0.3932 ,

0.2776, 0.5041

  

  

0.1833, 0.3635 ,

0.2975, 0.5352

  

  

0.1361, 0.2953 ,

0.3905, 0.6093

  

  

0.2580, 0.4469 ,

0.2435, 0.4428
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successfully introduces the selection process of the cross-
docking candidates by evaluation factors from the ordinal 
fuzzy sets to interval-valued of IFSs’ relations in establish-
ing and aggregating the decision by the IVIF matrix. The 
presented steps show the main finer points of the IVIF-
MCGDM model over the traditional assessment studies. 

The basic principle of traditional TOPSIS method is 
that the best alternative should consider the shortest dis-
tance from the positive-ideal solution and the farthest 
distance from the negative-ideal solution (Hwang, Yoon 
1981; Chen, Hwang 1992). In addition, the extension of 
TOPSIS method by Chen (2000) with conventional fuzzy 
numbers was known as the solving decision problems un-
der fuzzy uncertainty. 

The proposed IVIF-MCGDM model introduced in 
this study has the following novelties: 

 – a new extension of fuzzy sets in IVIF form for the 
compromise solution under multi-criteria is pre-
sented to demonstrate greater adaptability and better 
portrayal uncertainties than ordinal fuzzy sets due to 
the way that the proposed model utilizes IVIF num-
bers. These fuzzy numbers represent degrees that the 
candidate satisfies and does not satisfy the criterion 
provided by the DM versus the selected criteria to 
cope with more imprecise information; 

 – a novel ranking index (i.e., CI) using IVIF-indices as 
well as score function has been developed that prop-
erly addresses distances of cross-dock candidates ver-
sus IVIF ideal solutions; 

 – two subtraction and division operations on IVIF sets, 
proposed by Hashemi et al. (2014), are presented for 
the CDLSP; 

 – importance of evaluation factors for the CDLSP in 
IVIF form, that will be profoundly essential in the 
GDM for complex logistics network problems, is 
obviously respected with utilizing two novel IVIF 
measures;

 – proposed model constructs the IVIF ideal separa-
tion matrices with the new operations between IVIF-
numbers to recognize among the candidates in the 
fuzzy CDLSP better than other past research that 
could be obtained by Euclidean distances of candi-
dates from two ideal solutions.

Conclusions 

Because of the high multifaceted nature of logistics net-
works, there are several difficulties for an individual ex-
pert to take all the critical parts of choice issues into con-
sideration in real-life situations and applications. 

Experts cannot precisely describe their opinions and 
preferences over the location candidates versus each cri-
terion and the weight of each evaluation criterion under 
uncertainty due to time pressure or lack of data. In such 
cases, the assessment process given by a group of experts 
can be represented as IVIF numbers. Hence, this study has 
developed a novel IVIF-MCGDM model by concepts of 
the compromise solution and a team of experts. 

In the model, the performance ratings of candidates 
in terms of evaluation factors and the relative importance 
factors were linguistic terms, which were denoted by IVIF 
numbers. IVIF-WAA operator has been used to aggregate 
experts’ opinions. Then, IVIF ideal separation matrices 
were constructed based on new subtraction and division 
operations in the fuzzy assessment process. Finally, a new 
IVIF ranking index has been presented with the score 
function of two IVIF indices to consider distances of cross-
dock alternatives from ideal solutions at the same time. 

Table 7. Weighted aggregated IVIF matrix 

                  Evaluation 
                      factors
Candidates

EA1 EA2 EA3 EA4 EA5 EA6

CD1

  

  

0.1178, 0.2767 ,

0.3704, 0.6251

  

  

0.0579, 0.1734 ,

0.5385, 0.7453

  

  

0.0825, 0.2235 ,

0.4420, 0.6881

  

  

0.1343, 0.3017 ,

0.3707, 0.6036

  

  

0.0929, 0.2409 ,

0.4389, 0.6713

  

  

0.1474,0.3267 ,

0.3327,0.5806

CD2

  

  

0.1445, 0.3238 ,

0.3321, 0.5699

  

  

0.0729, 0.2125 ,

0.4465, 0.7000

  

  

0.0847, 0.2296 ,

0.4297, 0.6808

  

  

0.0929, 0.2409 ,

0.4389, 0.6713

  

  

0.0961, 0.2531 ,

0.4104, 0.6580

  

  

0.1603, 0.3372 ,

0.3259, 0.5684

CD3

  

  

0.1225, 0.2867 ,

0.3620, 0.6139

  

  

0.1401, 0.3147 ,

0.3394, 0.5796

  

  

0.1381, 0.3159 ,

0.3599, 0.6033

  

  

0.2249, 0.4272 ,

0.2776, 0.4917

  

  

0.2669, 0.4817 ,

0.2541, 0.4555

  

  

0.2087, 0.4085 ,

0.2759, 0.4906

CD4

  

  

0.0856, 0.2404 ,

0.3995, 0.6679

  

  

0.1337, 0.3057 ,

0.3465, 0.5912

  

  

0.0865, 0.2372 ,

0.4106, 0.6744

  

  

0.1251, 0.2966 ,

0.3532, 0.6090

  

  

0.0929, 0.2409 ,

0.4389, 0.6713

  

  

0.1930, 0.3862 ,

0.2912, 0.5130

Table 8. Computational results of the proposed  
IVIF-MCGDM model 

Candidates hi Ji CIi
IVIF-MCGDM 
model ranking

CD1 3.3928 2.8482 6.2410 2
CD2 18.8167 3.4252 22.2419 4
CD3 0.9711 2.4877 3.4588 1
CD4 5.5843 2.9868 8.5711 3
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Proposed IVIF-MCGDM model also stays away from 
the challenges from developing TOPSIS methods under 
IVIF uncertainty. 

To demonstrate the application of the presented ap-
proach, an application example was given for the CDLSP 
in logistics networks. Hence, the obtained values high-
lighted that the approach provided experts an effective 
and practical way to solve logistics network problems by 
addressing degrees of satisfiability and non-satisfiability 
under multiple conflicting criteria in an uncertain envi-
ronment. 

To compare with other past research with ordinal fuzzy 
sets, it is pointed out that the IVIF-MCGDM approach as-
sist the experts with a useful way to handle GDM prob-
lems to denote the performance values of each cross-dock 
candidate along with importance of evaluation factors. 
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