
TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2017 Volume 32(4): 398–414
doi:10.3846/16484142.2015.1099053

A CASE STUDY OF THE IRANIAN NATIONAL RAILWAY AND ITS 
ABSOLUTE CAPACITY EXPANSION USING ANALYTICAL MODELS

Bayan Bevrani, Robert L. Burdett, Prasad K. D. V. Yarlagadda
Queensland University of Technology, Brisbane, Australia

Submitted 24 September 2014; resubmitted 29 October 2014, 1 February 2015; accepted 20 April 2015; 
first published online 11 October 2015

Abstract. Identifying railway capacity is an important task that can identify ‘in principal’ whether the network can 
handle an intended traffic flow, and whether there is any free capacity left for additional train services. Capacity de-
termination techniques can also be used to identify how best to improve an existing network, and at least cost. In this 
article, an optimization approach has been applied to a case study of the Iran national railway, in order to identify its 
current capacity and to optimally expand it given a variety of technical conditions. This railway is very important in 
Iran and will be upgraded extensively in the coming years. Hence, the conclusions in this article may help in that en-
deavor. A sensitivity analysis is recommended to evaluate a wider range of possible scenarios. Hence, more useful lower 
and upper bounds can be provided for the performance of the system.
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Introduction

Background Information
This paper considers the measurement and expan-

sion of capacity in the National Rah Ahane Iran (RAI, 
Iranian Railways) railway network. A simplified ver-
sion that only includes the main lines was selected for 
analysis. Some parts of the network were not included 
because those areas are less critical. The accurate quan-
tification of railway capacity is of great importance, es-
pecially in a developing country such as Iran. Accord-
ing to the homepage of the Iranian Railways (IranRail 
2014), Iran’s railway network is being extended by ap-
proximately 500 km of new rail per year. This is one of 
the greatest growths of any railway network in the world 
currently. By 2015 it is expected that RAI will be ex-
panded to include all regional population centres. At this 
stage, construction activities have been planned for the 
near future. The purpose of this paper is to help planners 
in Iran to determine absolute capacity of current and 
future railway infrastructure, and to assist expansion ac-
tivities. The primary aim of this paper is also to analyze 
the application and expansion of the Burdett and Kozan 
(2006) absolute capacity determination model in the 
context of RAI railway network. The secondary objective 
is to perform a sensitivity analysis of different elements 
and parametric values of the model with an open mind 

to possible extensions and modifications. Other capacity 
models could be utilized to analyse the RAI network but 
that is outside the scope of this paper.

In this paper, capacity is viewed as the sum of the 
number of trains that traverse each corridor over a 
specified time. Railway capacity can be characterized in 
two different ways, namely absolute and actual capacity. 
Absolute capacity determines the ‘maximum’ capacity of 
a railway network. Absolute capacity is an ideal measure 
and does not consider the possibility of delays, i.e. on 
critical sections, from loading/unloading goods and 
passengers, maintenance, and possible collision conflicts 
of trains. Hence, absolute capacity does not necessarily 
determine the real capacity of railway network and it is a 
theoretical value. Actual capacity, however, does include 
delays and is a measure of the real capacity.

It should be noted that individual corridors can be 
analyzed separately, as if they were not part of a larger, 
more complex network. Similarly, the total capacity of 
all individual corridors may be compared to the capacity 
of the whole network, in order to identify negative 
interaction effects and congestion levels. Absolute 
capacity depends on the number and mix of trains that 
traverse each corridor. Corridors, however, consist of 
one or more sections and hence the possibility that the 
same section occurs in different corridors is a certainty 
in complex railway networks. These ‘shared’ sections can 



become bottlenecks on the network, and will affect the 
overall system capacity and the capacity of individual 
corridors.

Railway capacity is not a single unique number; it is 
dependent on the mix of trains and how they are used. 
Different train types can have substantially different 
operating characteristics, including maximum speed, 
power-to ton ratio, and dispatching priority. Hence, a 
capacity model can only be used to identify whether the 
infrastructure can support the future traffic load. The 
aim of capacity model is also to realize whether there 
is sufficient capacity in a network. An understanding 
of how the mix of trains (i.e. the traffic) interacts is 
necessary for efficient planning, and for the expansion 
of infrastructure that will provide additional capacity. 
Capacity determination is vital for the expansion of 
railway networks. It helps planners to decide where 
the most significant changes can be made, to increase 
accessibility and reliability and to increase the flow of 
freight and passenger trains in the best way.

The remainder of the paper is organized as follows. 
In the next sub-section recent and noteworthy research 
that considers railway capacity modelling and capacity 
expansion has been reviewed and discussed. In Section 1 
analytical models for capacity determination and 
expansion were developed. The expansion model consists 
of two types, a static version and a time varying version. 
In Section 2 the case study is introduced for which the 
numerical investigations in Section 3 have been applied. 
Also in Section 3 various sensitivity analysis have been 
performed for the different model parameters. Finally, in 
last section this paper’s conclusion and future research 
directions are summarized.

Literature Review 
This section provides a review of the literature con-

cerning capacity determination, capacity expansion, and 
railway planning. There is an abundance of research on 
capacity determination involving networks of various 
types. Examples include De Kort et al. (2003), Goverde 
et al. (2013), Landex (2009), Mussone et al. (2013), Bur-
dett, Kozan (2004, 2006, 2014), Bevrani et  al. (2015), 
Ferguson (2014). The integration, coordination, and 
planning of the different key components is typically 
concentrated upon. For instance, Burdett and Kozan 
(2004) discussed the details behind the application of 
timetabling trains in order to maximise and identify the 
capacity of a railway network. In that article, interference 
delays were ignored and this considerably reduced the 
complexity of the timetabling problem. Burdett and Ko-
zan (2006) followed up their previous article from Bur-
dett and Kozan (2004) and developed analytical capac-
ity determination models. In particular they identified 
how the mix of different train types affects the absolute 
capacity of a railway network. The proposed mathemati-
cal optimization model takes into account the percent-
age mix of trains, the direction of travel, dwelling times, 
train speeds, and the presence and position of signals. 
Mussone et  al. (2013) proposed an analytical capacity 
model for railway systems. That model was based upon 

the Burdett and Kozan (2006) model but it takes into 
account junctions and other more complex nodes and 
stations. It is also able to calculate the capacity of a rail-
way system without decomposing the problem into sub 
problems. 

The UIC method (UIC 2004) is a competing capac-
ity approach that is based upon the compression of an 
existing timetable. Critical sections of rail are saturated 
in that approach, and the progress of trains over time 
is counted. A weakness of the UIC is that a timetable 
is always required and that timetable is never violated 
or altered. However, this is also an advantage because it 
also takes into account the way a particular railway sys-
tem is actually used. In this article an existing timetable 
is not available; hence that method cannot be used.

The challenges of capacity allocation on a railway 
network was addressed by Gibson (2003). They have 
identified the key features of rail timetables and track 
access rights. They introduced three basic methodolo-
gies for allocating capacity on the rail network such as 
administered, cost-based, and market/value-base. Lusby 
et al. (2011) provided a broad overview of the different 
techniques for routing trains in railway networks in or-
der to maximise capacity utilisation. In summary, solv-
ing these types of problems, result in large formulations. 
Furthermore, these approaches are inflexible because ad-
ditional train paths cannot be included easily.

Sectional Running Time (SRT) is an important 
component that affects the capacity of railway network. 
Kozan and Burdett (2005), Vromans et  al. (2006) and 
Harrod (2009) have shown that SRT has a significant 
impact on capacity analysis, for instance, a slight change 
in SRT can have remarkable effect on the amount of ca-
pacity.

The efficient use of assets to increase capacity has 
been considered for various types of systems. For rail-
ways Lai et al. (2010) is noteworthy. They suggested a 
capacity model to evaluate network capacity and to help 
planners by introducing possible expansion option to 
determine the optimal network investment. The model 
assumes the entire network is double tracked. They ig-
nore meeting between trains and assume meeting occur 
within sections. In addition, the impacts and causes of 
heterogeneity with freight and passenger traffic are de-
termined by using dispatch simulation software. The im-
pact of different types of heterogeneity on implications 
for capacity planning had been studied to introduce 
more effective planning and efficient rail operations 
(Dingler et al. 2009). The paper of Shih et al. (2014) is 
also noteworthy because they compared different capac-
ity expansion strategies for single track railway lines. For 
example, they considered the effect of placing additional 
sidings and the extension of existing sidings. They also 
considered track duplications in a limited way. This pa-
per chose the best expansion strategy by performing 
an efficiency and reliability analyses using simulations.

For systems other than railways the recent article 
by Singh et al. (2012) is notable. They developed a ge-
neric mixed integer linear programming capacity expan-
sion planning model to identify infrastructure improve-
ments for optimising a bulk material supply chain. It was 

Transport, 2017, 32(4): 398–414 399



necessary to use meta-heuristics because that model was 
computationally intractable.

Some support tools have been introduced for ca-
pacity management. Krueger (1999) introduced a practi-
cal parametric capacity model to increase the efficiency 
of track movements. This model identified bottleneck ar-
eas, and other places where congestion occurs. Another 
decision support tool was introduced to allocate the 
capital investment toward determining the best possible 
way for optimal capacity planning (Lai, Barkan 2011). 
This decision support tool can determine the optimal 
investment plan by maximizing the return on invest-
ment from capacity expansion plans. Therefore, it will 
enhance the ability of stakeholders to provide reliable 
service to customers. 

This article builds upon the analysis performed in 
Yaghini et al. (2014). In that paper the impact of differ-
ent train types were investigated for the Tehran–Zanjan 
corridor in Iran. They found that capacity tends to in-
crease nonlinearly and the mix of train types reduces the 
railway line capacity. In contrast, the entire Iranian net-
work is considered in this article and capacity increase 
via infrastructure expansion.

1. Analytical Model for Capacity  
Determination and Expansion

As previously mentioned, absolute capacity is not a 
single unique number and varies for different mixes of 
trains. The capacity model deals with this by utilizing 
directional and proportional distributions that describe 
and regulate the percentage mix of trains on each cor-
ridor and in each direction. Both freight and passenger 
train services are included in the percentage mix. In 
complex networks there is high probability that a section 
will be part of several different corridors. These shared 
sections will be more saturated, i.e. heavily occupied. In 
this section the Burdett and Kozan (2006) model is uti-
lized. That mathematical formulation has been simpli-
fied for this article and is as follows:

Maximize:

( )
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The variables and parameters for this model are 
summarized in Table 1.

Table 1. Variables and parameters of the base capacity model

Indices
i, j, c, s, t Train, train, corridor, section, time period

Sets
C, I, S Set of corridors, train types, sections

Decision Variables
c
ix


, c
ix
 # of trains, forwards/backwards on corridor c

s
iy


, s
iy


# of trains, forwards/backwards on section s

Parameters
T Duration of time period for capacity analysis

s
iT


, s
iT


Section occupancy and SRT (can also include 
delays and other factors to facilitate the 
computation of actual capacity)

µc
i , ηc

i , σc
Directional and proportional train mix,  
flow percentages across corridors

Wc Sections present in each corridor
ts Number of tracks on section s

The objective of this model is to determine the 
number of trains that traverse all corridors, in both 
the forward and reverse direction, over specified time 
period T. Constraint (2) ensures that the flow through 
each section of the network must be less than or equal 
to the saturation limit. Constraint (3) ensures that the 
proportional mix of trains in each corridor is satisfied. 
Constraint (4) regulates the flow of trains in each direc-
tion. Similarly, constraint (5) regulates the flow of traf-
fic between the different corridors. The last constraint 
ensures that the decision variables, i.e. the number of 
trains of each type traversing each corridor, are posi-
tive. It should be noted, that Eq. (7) is a mechanism to 
translate train numbers across different corridors to a 
compatible number across sections.

Constraint (5) regulates competition across corri-
dors, however it is necessary, and perhaps more realis-
tic, that competition must be regulated between specific 
corridors with common sections. Hence, in this article a 
new idea is put forth. For example, a new parameter ′σ ,c c

c  
should be defined which describes the % of trains that 
should use corridor c in comparison to the combined 
total that use corridor c and c′. Hence ′′

′σ + σ =,, 1c cc c
c c  

and the following constraint should be added:

( )
∈

+ =∑ c c
i i

i I
x x
  ( )′ ′

′
∈

σ + + +∑,
c c c c

c c i i i i
i I

x x x x
   

. (8)
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In order to expand network capacity, track dupli-
cation has been considered. For example, duplicating the 
number of tracks that occur between adjacent locations 
on the network can significantly increase the capacity 
of the rail network. Upon reflection it is easy to include 
track duplication in the capacity model by adding the 
following constraints:

( ) ( )
∈

+ ≤ τ +∑ ||s s s s
i i i i s s

i I
y T y T T
 

 

,  

∀ ∈s S  [section saturation]; (9)

( )
∈

⋅ ≤∑ || ||s s
s S

Ct B [limitation on spending – budget]; (10)

≤ ≤ max0  || ||s s , ∀ ∈s S [limit on track numbers];        (11)

( )
∈

≤∑ ||s
s S

N  [limitation on number of duplications].  (12)

In the above modifications the number of paral-
lel tracks added to each section is defined by ||s . Also, 
the cost of a single duplicated track is ||

sCt . The maxi-
mum number of tracks that can be added to section s 
is defined as max||s . Constraint (2) is replaced with con-
straint (9) as it includes the effect of track duplications 
on capacity. For example, in the normal situation where 
we have a single section of track, there is a total of T 
units of time for trains to use that section. However, if 
we duplicate that section of rail, and assume that each 
track is completely independent, twice as many trains 
can traverse the same section and capacity can in theory 
be doubled. In total, there are hence 2T units of time 
available. In general τ + ||s s  is the total number of tracks 
available and a multiplier for the increase in capacity. 
The assumption of track independence within parallel 
sections is believed to be sufficient for high level plan-
ning purposes. Constraint (10) is added to enforce a 
specified limitation on the total budget (i.e. B) for dupli-
cating tracks. Maximizing the capacity is still the objec-
tive function here. An assumption is also made for the 
SRTs to be the same on parallel tracks. This assumption 
must be made otherwise additional decisions concerning 
which parallel track individual trains are assigned to, are 
needed. From a practical perspective, track duplication 
cannot be separated from budgetary considerations. This 
is because the problem would become unbounded, and 
sections would be duplicated without limit. In the event 
that a budget is not provided it is necessary to restrict 
the number of duplications and to do this constraint 
(12) should be added. It can be viewed as an optional 
constraint and does not need to be added otherwise.

Another decision-making problem can also be for-
mulated whereby the sections that should be upgraded 
in order to achieve a specified level of absolute capacity 
is to be determined. In that problem, a budget could be 
provided, but it is not entirely necessary. This variant 
problem has an alternative objective, which is cost mini-
mization. 

Capacity increases could be required over time. 
Time varying expansion model can be introduced to 

help planner to increase the capacity in certain period 
by considering the optimal cost and time. In order to 
identify a plan of capacity expansions over time the fol-
lowing model is formulated:

Minimize: P̂ ,
subject to:

( )
∈

+ ≤ ⋅ τ∑ , , ,
s s s s
i p i i p i s p

i I
y T y T T

 

 

, 

∀ ∈s S , ∀ ∈p P  [section saturation];           (13)

( )
∈ ∈Ω

= ∑, ,
| c

s c
i p i p

c C s
y x
 

 and 

( )
∈ ∈Ω

= ∑, ,
| c

s c
i p i p

c C s
y x
 

 [section usage];           (14)

( )
∈

+ = η +∑, , , , ,  c c c c c
i p i p i p j p j p

j I
x x x x
   

, 

∀ ∈i I , ∈  c C , ∀ ∈p P   [proportional mix];        (15)

( )= µ +, , , ,  c c c c
i p i p i p i px x x
  

, 

∀ ∈i I , ∈c C , ∀ ∈p P  [directional mix];        (16)

( ) ( )′ ′

′∈ ∈ ∈

+ = σ +∑ ∑∑, , , ,
c c c c
i p i p c i p i p

i I c Ci I
x x x x
   

, 

∀ ∈  c C , ∀ ∈p P  [mix across corridors];             (17)

≥, ,, 0c c
i p i px x
 

, 

∀ ∈i I , ∈  c C , ∀ ∈p P  [positivity requirement];  (18)

≤ ≤ max
,0  || ||s p s , τ ≤ max

,  ||s p s , 

∀ ∈  s S , ∈p P  [limit on track numbers];          (19)

−τ =τ,  , 1  s p s p , = − −τ τ +,  , 1 , 1 ||s p s p s p , 

∀ ∈s S, ∀ ∈ >| 1p P p  [current track numbers];  (20)

( )
∈ ∈

= + ≥∑∑ , , c c
p i p i p p

c Ci I
A x x

  A , 

∀ ∈p P  [intermediate requirement];           (21)

( )
∈

= ⋅∑ ,
||

,||p s p s p
s S

e Ct , 

∀ ∈p P  [current expenditure];                         (22)

≤ ≤1 P̂ P  [bound on the period];           (23)

= …

≤∑
1

 p p
p np

e B , ∀ ∈p P  [limit on spending];   (24)

( ) +
+ ≤ −ϕ1  1  p pe M , 

∀ ∈ <|p P p P  [no further spending];            (25)

≥ϕ ⋅  p p fA A , ∀ ∈p P  [min requirement];          (26)

−≥ 1 p pA A , ∀ ∈ >| 1p P p   [increasing capacity];   (27)

( ) +< + ϕˆ pp P M , ∀ ∈p P  [binary condition];   (28)

( ) +≥ + ϕ − ˆ 1pp P M , ∀ ∈p P  [binary condition];   (29)

{ }ϕ ∈ 0,1  p , ∀ ∈p P  [binary parameter].           (30)

Transport, 2017, 32(4): 398–414 401



The primary purpose of this model is to create an 
expansion plan of minimal duration P̂ . The output of 
this model is a list of which sections should be duplicat-
ed in each period of time. Furthermore, this model en-
sures that the capacity of the system has been increased 
to specified level. The decisions that are made are limited 
by the budget that has been provided. The parameters 
in this model are the same as previously defined above 
except that a subscript for the time period p has been 
introduced. The planning period is limited. The duration 
of each period is for example one year however, any oth-
er suitable period of time could be selected. Half of the 
constraints, i.e. Eqs (13–19), have already been defined 
and these focus upon the determination of network ca-
pacity. The remaining constraints deal purely with the 
expansion decision. 

Eq. (24) ensures that the total spending across all 
periods of time must be less than the specified budgetary 
limit. Eq. (28) ensures that the absolute capacity in each 
period is greater than the last period, i.e. it is strictly 
increasing. The model meets the specified minimum 
requirement Af for absolute capacity and furthermore 
that there will be no further spending after time period 
P̂ . The binary variable jp has been introduced in order 
to identify whether each period p for instance occurs 
before or after P̂ . For example if ≥ ˆ p P , then jp = 1. 
Similarly if < ˆ p P , then jp = 0. This binary variable is 
used within the constraints 27, 29, and 30. Constraint 
29 and 30 describe the relationship between the index p, 
P̂  and jp.

2. Case Study Details

This paper considers a simplified version of Iran’s rail-
way network that passes through Tehran and the ports 
in the south of Iran. RAI is the name of this national 
rail system. It links the population centres in the west 
and east of Iran, and has single and double tracks lines. 
Iran’s most populated cities are close to the capital Teh-
ran. Iran has a large population of about 80 million peo-
ple, and constitutes a large area of land geographically. 
There is much travel by train from the west to the east 
of the country, between the different religious centres 
(i.e. cities). In addition, the main ports are located in the 
north and south, near to the sea, on the border of Iran. 
According to Tehran Times (2012), 33 million tons of 
goods and 29 million passengers are transported annu-
ally by this railway. In 2011, this network accounted for 
9% and 11% of all transportations in Iran. Fig. 1 shows 
visually the main corridors where passengers and freight 
are transported and the networks data is shown in Ap-
pendix A. This network data was extracted from the of-
ficial RAI railway network map. Unfortunately, this map 
is not entirely to scale. However, it is sufficiently close 
to real life values. More accurate values can be obtained 
from Jim Fergusson’s Railway and Tramway Station 
Lists (Jim Fergusson’s Railway… 2014), however, some 
inaccuracies exist in that information too, regarding the 
names and positions of railway station and other in-
frastructure which have been updated in recent years. 

Fig. 1. Network diagram for the RAI
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This network has 38 sections and approximately 9 major 
corridors whose length varies from 1527–2724 km (Jim 
Fergusson’s Railway… 2014). The Iranian rail network 
is the preferred mode of transport as the Iranian road 
network has been recognized as one of the most danger-
ous networks in the world, with many accidents per year 
(Khajehpour 2013). RAI has extensive infrastructure ex-
pansion plan/objectives to provide improved access and 
to meet future demands in developing population cen-
tres. Many new railway lines have been planned and will 
be constructed in near future. The cost of infrastructure 
expansion over the next 5 to 10 years will be billions of 
dollars.

3. Numerical Investigations

3.1. Sensitivity Analysis of Capacity 
In this section a sensitivity analysis has been per-
formed. In that analysis the model has been applied (i.e. 
solved) many times. It is important to note that three 
train types were considered whose speeds are 80, 100 
and 120 km/h respectively. The analysis was also per-
formed for a time period of one day, i.e. 1440 minutes. 
For three train types, and assuming increments of 0.01 

(i.e. 1%), there are ⋅
= =102

100
102 101 5151

2
C  possible ways 

of changing ηc  if η +η + η =1 2 3 1c c c . If there were only 
two train types then the actual number of possibilities 
reduces considerably, i.e. to a value of 101. In general, 
the actual number is given by the following formula 

( )
( ) ( )

+ − + −
=

−
1 1 !

1 ! !
N I
N

N I
C

I N
, where N = 100 and I  is the 

number of train types. This formula and other related 
ones have been discussed in Burdett and Kozan (2003). 
It should also be noted that η = 0c

i  is allowed here. This 
formula is derived by realizing that there are 100 values 
that can be assigned to the I  groups plus −1I  values 
of zero percent are possible. 

In summary, the number of possible proportional 
distributions is very large and it is impractical to evalu-
ate each one, i.e. by solving the optimization model, al-
though it is possible to do so. The question of what to do 
with all of these results and what they mean then arises. 
In conclusion, it is best to take an alternative strategy. In 
this article, we propose that individual corridors and in-
dividual train types are analyzed. The proportional dis-
tribution and the percentage flow parameters can easily 
be altered to facilitate this. These results are shown in 

Tables 2 and 3. These restrictions were then discarded 
and multiple train types were considered as was the ca-
pacity of the entire network. The duplication of the en-
tire network was also investigated. In the Tables 2 and 3 
‘Mix’ refers to an arbitrarily selected mix of trains, which 
is shown in Appendix B.

In Table 2 the results for train type 1 can be viewed 
as lower bounds on capacity, for instance for individual 
corridors and for the whole network, as that train is 
slowest. Furthermore, train type 3 results can be viewed 
as upper bounds, because it is fastest. Any proportional 
mix of trains must result in a value of capacity between 
the aforementioned limits.

The utilization value (and the associated value of 
reduction) in the last column describes the relationship 
between the networks capacity as a whole with the total 
capacity of all the individual corridors together. Hence, 
in this example, approximately one third of that sum is 
achieved. This means that the structure of the network 
does not allow individual corridors to be utilized fully 
and in isolation. In other words, they must share the 
networks lines with trains from other corridors. This is 
clearly obvious from Fig.  1. The extent of the interac-
tion effects is quite high for the specified mix of trains. 
If the corridors were defined in different ways, then the 
utilization and reduction values could be used to make 
a comparison with other alternatives.

3.2. Manual Duplication
Track duplications are considered in this section. Table 3 
shows that duplicating all sections do not change the ex-
tent of the interaction effects, except for the case where a 
proportional mix of trains was selected. If the results in 
Table 3 were divided by those in Table 2 then the ratio is 
approximately 2 for all cases. Hence, it can be concluded 
that if capacity is to be doubled then in theory an ad-
ditional track could be built in each section parallel to 
the existing one.

Duplicating all sections of rail is however quite ex-
treme and costly. Hence, it would be best to duplicate 
fewer sections if possible, but still obtain comparable 
levels of capacity if not the same level. Therefore, the 
bottleneck sections on each serial link have been dupli-
cated first and the model have been re-solved to see what 
effect occurs. This course of action was taken because 
of existing theory on bottlenecks. For example, it is the 
bottleneck section that dictates the capacity of a single 
line and altering other sections is superfluous until is-
sues on that section are resolved. For example, in the 
RAI network, there are six separate linear segments. In 

Table 2. Sensitivity analysis of absolute capacity per km

i A 
(net)

A (individual corridors) Utilisation (reduction)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 16.41 6.8571 8.7273 3.3684 4.2667 6.8571 3.3684 4.2667 3.3864 4.2667 45.3648 0.36 (0.64)
2 20.512 8.7514 10.9091 4.2105 5.3333 8.5714 4.2105 5.3333 4.2105 5.3333 56.8633 0.36 (0.64)
3 (UB) 24.615 10.286 13.091 5.0526 6.40 10.286 5.0526 6.40 5.0526 6.40 68.0208 0.36 (0.64)
Mix 20.955 9.4538 10.515 3.4655 4.3986 8.2484 3.8365 5.8824 4.0583 4.3896 54.2481 0.39 (0.61)

Transport, 2017, 32(4): 398–414 403



each of those, the following sections are longest: s4, s18, 
s19, s23, s30, s37. These bottleneck sections were dupli-
cated and resulting absolute values are shown in Table 4. 
Fig. 2 shows the changes to the network.

The values in Table 4 lie between those in Tab-
les 2–3. 

For some corridors, larger improvements have oc-
curred, but in others, there has been less. To identify the 
exact difference, the ratios of the values in Table 5 with 
those in Table 2 and 3 have been computed (i.e. individ-
ually). Upon closer inspection, the reason for the pres-
ence or absence of improvement is purely based upon 
the distribution of the section lengths in each linear seg-
ment. In some segments, the duplication of the bottle-

neck has shifted the bottleneck outside of that linear seg-
ment to another part of network, whereas in other cases 
the bottleneck still occurs within the linear segment.  
Table 5 shows that duplicating the bottleneck sections 
in each linear segment can increase capacity by approxi-
mately 1 to 1.3 times. However, the values in Table 3 are 
still somewhat higher than those in Table 4, i.e. 1.5 to 
1.91 times greater. Hence, some other sections still need 
to be duplicated in order to obtain those higher levels 
of capacity.

Given the aforementioned success at increasing ca-
pacity by duplicating the bottleneck sections, the next 
logical step is to duplicate the next set of bottleneck sec-
tions on each linear segment. In other words, we pro-

Table 3. Duplication of all sections with an additional single track

i A 
(net)

A (individual corridors) Utilisation (reduction)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 32.82 13.714 17.455 6.737 8.5333 13.714 6.737 8.5333 6.737 8.5333 90.6939 0.36 (0.64)
2 41.024 17.143 21.818 8.4211 10.667 17.143 8.4211 10.667 8.4211 10.667 113.368 0.36 (0.64)
3 (UB) 49.229 20.571 26.182 10.105 12.80 20.571 10.105 12.80 10.105 12.80 136.039 0.36 (0.64)
Mix 41.909 18.908 21.03 6.931 8.797 16.497 7.673 11.765 8.1167 8.7791 108.497 0.39 (0.61)

Fig. 2. Upgraded network diagram for the RAI (bold – duplicated, dashed – next longest section)

Table 4. Sensitivity analysis of duplicated bottleneck sections

i A 
(net)

A (individual corridors) Utilisation (reduction)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 21.839 9.143 9.143 4.364 4.571 12.80 4.364 4.571 4.364 4.571 57.891 0.38 (0.62)
2 27.299 11.429 11.429 5.455 5.714 16.00 5.455 5.714 5.455 5.714 72.365 0.38 (0.62)
3 (UB) 32.758 13.714 13.714 6.546 6.857 19.20 6.546 6.8571 6.546 6.857 86.837 0.38 (0.62)
Mix 27.876 12.605 11.015 4.489 4.713 15.397 4.97 6.303 5.257 4.703 69.452 0.40 (0.60)
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pose an iterative process of track duplications in order 
to increase capacity. Those sections are s3, s27, s29 and 
s35. The model was resolved and the results are shown 
in Table 7.

The values in Table 7 lie between those in Tab-
les 3–4. For some corridors, larger improvements have 
occurred, and in some of them the capacity is exactly 
equal. To identify the exact difference, the ratios of the 
values in Table 7 with those in Tables 3–4 have been 
computed (i.e. individually).

Tables 8–9 show that the latest set of duplications 
has increased capacity by approximately 1 to 1.87 times. 
Furthermore, the values in Table 3 are quite close to the 
values that are shown in Table 7. Some further duplica-
tion is warranted in order to reach the capacity values in 
Table 3 but it is difficult to identify with certainty where 
sections should be duplicated. Hence, a mathematical 
model that identifies these positions would be highly 
beneficial.

3.3. Automated Duplication
In this section we have taken the basic capacity model 
and have added the aforementioned modifications for 
expanding capacity via track duplications. The model 
has been applied to the case study and the results are 
presented in Table 10. In Table 10 when the restric-
tion of a single duplication (i.e. =max|| 1s ) per section 
is enforced, the absolute capacity cannot be increased 
beyond 41.909 trains. Upon inspection, the reason for 
this is that in order to increase capacity further the same 
sections should be duplicated again whereas the other 
unduplicated sections should not. When the restriction 
of a single duplication per section is relaxed to two then 
the absolute capacity does increase. In comparison, the 
increase is quite significant because the capacity changes 
from 41.909 to 60.819 trains. After 46 track duplications, 
absolute capacity does not increase any further. In the 
third column when the maximum duplication is 3, this 

Table 5. Ratio of Table 3 to Table 2

i A  
(net)

A (individual corridors)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 1.33 1.33 1.05 1.3 1.07 1.87 1.3 1.07 1.29 1.07 1.28
2 1.33 1.31 1.05 1.3 1.07 1.87 1.3 1.07 1.3 1.07 1.27
3 (UB) 1.33 1.33 1.05 1.3 1.07 1.87 1.3 1.07 1.3 1.07 1.28
Mix 1.33 1.33 1.05 1.3 1.07 1.87 1.3 1.07 1.3 1.07 1.28

Table 6. Ratio of Table 2 to Table 3

i A  
(net)

A (individual corridors)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 1.5 1.5 1.91 1.54 1.87 1.07 1.54 1.87 1.54 1.87 1.57
2 1.5 1.5 1.91 1.54 1.87 1.07 1.54 1.87 1.54 1.87 1.57
3 (UB) 1.5 1.5 1.91 1.54 1.87 1.07 1.54 1.87 1.54 1.87 1.57
Mix 1.5 1.5 1.91 1.54 1.87 1.07 1.54 1.87 1.54 1.87 1.56

Table 7. Sensitivity analysis of further duplicated bottleneck sections

i A 
(net)

A (individual corridors) Utilisation (reduction)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 25.945 10.105 10.105 6.737 8.533 12.80 6.737 8.5333 6.737 8.5333 78.821 0.33 (0.67)
2 32.431 12.632 12.632 8.421 10.667 16.00 8.421 10.667 8.421 10.667 98.528 0.33 (0.67)
3 (UB) 38.917 15.158 15.158 10.105 12.80 19.20 10.105 12.80 10.105 12.80 118.231 0.33 (0.67)
Mix 33.384 13.932 12.715 69.31 8.797 15.397 7.673 11.765 8.1167 8.7791 94.106 0.35 (0.65)

Table 8. Ratio of Table 7 to Table 4

i A  
(net)

A (individual corridors)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 1.19 1.11 1.11 1.54 1.87 1.00 1.54 1.87 1.54 1.87 1.36
2 1.19 1.11 1.11 1.54 1.87 1.00 1.54 1.87 1.54 1.87 1.36
3 (UB) 1.19 1.11 1.11 1.54 1.87 1.00 1.54 1.87 1.54 1.87 1.36
Mix 1.20 1.11 1.15 1.54 1.87 1.00 1.54 1.87 1.54 1.87 1.35
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allows the absolute capacity to be increased even further. 
These increases stop after 66 tracks duplication; and ca-
pacity does not increase from additional duplications. 
The increase in capacity for incremental changes to the 
total number of duplications is not uniform. Further-
more, some incremental changes do not result in an 
increase to capacity. Sometimes multiple duplications 
must be performed in order for the absolute capacity 
to be increased.

In the manual approach, we assumed that dupli-
cating bottleneck sections is the best way to increase 
the capacity. However, Table 10 shows that capacity can 
be increased further by choosing different sections. For 
example, for the specified mix of trains the manual ap-
proach was able to increase capacity to 27.876 trains 

while the expansion model was able to increase it to 
32.716 trains. This is a significant increase. 

The results in Table 10 have different flows on each 
corridor. The model has chosen different flows each time 
in order to maximize capacity for the current set of re-
strictions. This means that the model has been biased 
towards different corridors as supposed to other ones 
(Fig. 3). Hence, some corridors have not been given any 
flow at all; in practice, this is unacceptable. Consequent-
ly, minimum flows should be defined for each corridor 
and the analysis must be re-performed. This is not to say 
that the results in Table 10 are of no value. These results 
provide an upper bound of the effect of duplication and 
provide higher levels of capacity than would have been 
obtained otherwise.

Table 9. Ratio of Table 3 to Table 7

i A  
(net)

A (individual corridors)
1 2 3 4 5 6 7 8 9 Sum

1 (LB) 1.26 1.36 1.73 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.15

2 1.26 1.36 1.73 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.15

3 (UB) 1.26 1.36 1.73 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.15

Mix 1.26 1.36 1.65 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.15

Table 10. Result of expansion model (no flow constraint) 

=max|| 1s =max|| 2s =max|| 3s

# A # A # A # A # A # A
0 20.955 20 41.361 0 20955 20 48.03 0 20.955 20 49.187

1 25.046 21 41.909 1 25.046 21 48.86.1 1 25.046 21 49.90

2 26.692 2 26.692 22 49.91.6 2 26.692 22 50.663

3 27.991 3 27.991 23 50.95.3 3 27.991 23 51.763

4 29.356 4 29.356 24 52.05 4 29.356 24 52.487

5 30.60 5 30.60 25 52.761 5 30.60 25 53.587

6 32.716 6 32.716 26 53.075 6 32.716 26 54.30

7 33.319 7 33.319 27 53.075 7 33.319 27 54.98

8 34.724 8 34.724 28 53.706 8 34.724 28 55.554

9 35.324 9 35.568 29 54.225 9 35.568 29 57.218

10 36.741 10 36.741 30 55.039 10 36.741 30 58.033

11 37.306 11 37.767 31 56.112 11 37.817 31 58.711

12 38.162 12 38.478 32 57.056 12 38.478 32 60.603

13 38.955 13 39.709 33 57.867 13 40.016 33 61.051

14 40.605 14 40.892 34 58.811 14 40.892 34 62.841

15 41.153 15 42.441 35 59.232 15 42.441 35 63.621

16 41.153 16 43513 36 59.232 16 43.513 36 64.334

17 41.153 17 45.011 37 59.808 17 45.837 37 64.755

18 41.153 18 46.083 38 60.819 18 46.617 38 66.511

19 41.153 19 46.898 19 48.288
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When there is no restriction on corridor flows, the 
model maximizes capacity by giving preference to cor-
ridors that have a higher capacity. This is clearly shown 
in Fig. 4 because none of the lines are flat, i.e. each line 
varies and the percentages are vastly different between 
corridors. There is no special pattern to the assignment 
of flow to different corridors.

In Table 11, the percentage flow for each corridor is 
assumed equal. Duplicating the specific sections shown 
in Fig. 5 allows a greater flow of trains. In some linear 
segments, two sections were duplicated while some lin-
ear segment was not duplicated at all. Due to the im-
balance in the lengths of the different sections within 

different corridors, this is clearly necessary. For example, 
some of the biggest sections were duplicated in the cor-
ridor A–E in order to be able to compete with the flow 
of other linear segments like A–C. These results are not 
immediately obvious or transparent. Hence, choosing 
correct sections for duplication can be quite difficult.

The sensitivity analysis in the preceding tables was 
based upon the incremental change to the number of 
track duplications. However, it is necessary to investi-
gate incremental changes to the budget. The model was 
run again for the two different percentage flows. For in-
stance, the percentage flow was not included initially, 
and then it was introduced so that the flow is the same 

Fig. 3. Expanded network (unequal flow)
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Fig. 4. Comparison of percentage flow on each corridor for different number of track duplications
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on each corridor. The results for different limits of the 
number of duplications in each section were also anal-
ysed. The results are shown in Tables 12–15 and these 
are also summarised graphically in Fig.  6. The model 
was run 200 times. However, the tables are truncated to 
the point where no further change occurred.

The curves in Fig. 6 taper off and become flat and do 
not increase without limit. In the first chart (Fig. 6a), the 
increase is quite shallow. In the second chart (Fig. 6b), 
the increase is greater, but in the third (Fig.  6c), it is 
greatest when the duplication limit is most relaxed.

Table 11. Expansion results when flow is equal across all the corridors (i.e. PF = 1/9)

=max|| 1s =max|| 2s =max|| 3s

# A # A # A # A
0 11.3232 0 11.3232 0 11.3232 19 35.5844
1 14.3637 1 14.3637 1 14.3637 20 35.5844
2 14.6687 2 14.6687 2 14.6687 21 36.4922
3 15.3896 3 15.3896 3 15.3896 22 36.4922
4 19.5494 4 19.5494 4 19.5494 23 36.4922
5 22.4812 5 22.4812 5 22.4812 24 36.4922
6 22.6464 6 22.6464 6 22.6464 25 36.4922

7 23.5517 7 23.5517 26 36.4922
8 24.9091 8 24.9091 27 39.0988
9 25.555 9 25.555 28 39.1736

10 26.0308 10 26.0308 29 41.5151
11 28.7273 11 28.7273 30 43.091
12 29.3373 12 29.3373 31 43.091
13 30.7793 13 30.7793 32 43.091
14 30.7793 14 30.7793 33 44.006
15 30.7793 15 30.7793 34 44.9623
16 32.9724 16 32.9724 35 45.2927
17 33.2121 17 33.2121
18 33.9696 18 33.9696

Fig. 5. Expanded network (equal flow)
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Table 12. Absolute capacity for incremental budget changes ( =max|| 1s ) 

No % flow restriction Equal % flow

# A # A # A # A # A
0 20.9546 21 36.0093 42 41.1532 0 11.3232 21 19.5494
1 20.9546 22 36.0093 43 41.1532 1 11.3232 22 22.4812
2 22.6011 23 36.0093 44 41.1532 2 113232 23 22.4812
3 25.0455 24 36.3149 45 41.1532 3 11.3232 24 22.6464
4 25.0455 25 36.6963 46 41.3612 4 11.3232 25 22.6464
5 26.692 26 36.6963 47 41.3612 5 11.3232 26 22.6464
6 26.692 27 38.1102 48 41.9092 6 14.3637 27 22.6464
7 27.1624 28 38.9546 7 14.3637 28 22.6464
8 27.1624 29 38.9546 8 14.3637 29 22.6464
9 27.8569 30 38.9546 9 14.3637 30 22.6464

10 28.151 31 38.9546 10 14.3637 31 22.6464
11 30.5997 32 38.9546 11 14.6687 32 22.6464
12 30.5997 33 38.9546 12 14.6687 33 22.6464
13 32.7164 34 39.6416 13 14.6687 34 22.6464
14 33.1869 35 39.6416 14 14.6687 35 22.6464
15 33.1869 36 39.6416 15 15.3896 36 22.6464
16 33.1869 37 40.6051 16 15.3896 37 22.6464
17 34.1755 38 40.6051 17 15.3896 38 22.6464
18 35.5403 39 41.1532 18 15.3896 39 22.6464
19 35.5403 40 41.1532 19 19.5494 40 22.6464
20 36.0093 41 41.1532 20 19.5494 41 22.6464

Table 13. Absolute capacity for incrementasl budget changes ( =max|| 2s )

No % flow restriction Equal % flow

# A # A # A # A # A # A # A # A
0 20.9546 21 37.0044 42 48.5423 63 55.2681 84 59.9377 0 11.3232 21 19.5494 42 29.3373
1 20.9546 22 37.0044 43 48.8112 64 55.5452 85 60.4469 1 11.3232 22 22.4812 43 29.3373
2 22.6011 23 39.3022 44 49.3307 65 56.328 86 60.6326 2 11.3232 23 22.4812 44 29.3373
3 25.0455 24 40.164 45 50.2747 66 56.4861 87 60.8054 3 11.3232 24 22.6464 45 29.3373
4 25.0455 25 40.2431 46 51.1365 67 56.7296 88 61.0343 4 11.3232 25 22.6464 46 30.7793
5 26.692 26 40.7378 47 51.2155 68 56.8877 89 61.0343 5 11.3232 26 22.6464 47 30.7793
6 26.692 27 40.9472 48 51.2155 69 57.0986 90 61.4311 6 14.3637 27 22.6464 48 30.7793
7 27.1624 28 41.4162 49 51.6172 70 57.0986 91 61.6168 7 14.3637 28 226464 49 30.7793
8 27.1624 29 41.4479 50 51.7214 71 57.8601 92 61.731 8 14.3637 29 22.6464 50 30.7793
9 27.8569 30 42.5299 51 51.9071 72 57.8601 93 62.1044 9 14.3637 30 23.5517 51 30.7793

10 28.151 31 44.9251 52 52.123 73 582617 94 62.2901 10 14.3637 31 23.5517 52 30.7793
11 30.5997 32 45.7868 53 52.3087 74 58.4621 95 62.4622 11 14.6687 32 24.9091 53 30.7793
12 30.5997 33 45.8659 54 53.1121 75 58.8113 96 62.6917 12 14.6687 33 24.9091 54 30.7793
13 32.7164 34 45.8659 55 53.7063 76 58.8113 97 62.6917 13 14.6687 34 25.555 55 32.9724
14 33.1869 35 46.2675 56 53.892 77 58.9673 98 62.8639 14 14.6687 35 26.0308 56 33.2121
15 33.2341 36 46.3718 57 54.1608 78 59.2129 99 62.8639 15 15.3896 36 26.0308 57 33.2121
16 33.2341 37 46.5575 58 54.2936 79 59.5169 100 62.8639 16 15.3896 37 28.7273 58 33.9696
17 34.1755 38 46.7734 59 54.5625 80 59.5169 101 62.8639 17 15.3896 38 28.7273 59 33.9696
18 35.5403 39 46.9591 60 54.5625 81 59.9186 102 62.8639 18 15.38.96 39 28.7273 60 33.9696
19 355403 40 47.7624 61 54.8665 82 59.9186 103 62.8639 19 19.5494 40 28.7273 61 33.9696
20 36.0093 41 48.3567 62 54.9148 83 59.9186 104 62.8639 20 19.5494 41 28.7273 62 33.9696
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Table 14. Absolute capacity for incremental budget changes ( =max|| 3s )

No % flow restriction

# A # A # A # A # A # A # A
0 20.9546 21 37.0044 42 51.8871 63 61.7947 84 70.895 105 76.4049 106 80.7936
1 20.9546 22 37.0044 43 51.8871 64 62.9739 85 71.0807 106 76.4049 107 80.9792
2 22.6011 23 39.3022 44 51.8871 65 63.2866 86 72.0187 107 76.8257 108 82.109
3 25.0455 24 40.164 45 52.6328 66 65.3661 87 72.0187 108 76.8257 109 82.109
4 25.0455 25 40.2431 46 52.8185 67 65.3661 88 72.0187 109 77.0992 110 82.109
5 26.692 26 40.7378 47 53.0769 68 66.7481 89 72.0187 110 77.2849 111 82.109
6 26.692 27 40.9472 48 54.3484 69 66.7481 90 72.4442 111 77.6636 112 82.109
7 27.1624 28 41.4162 49 55.4694 70 66.7481 91 72.6299 112 77.6636 113 82.3063
8 27.1624 29 41.4479 50 56.555 71 66.7481 92 73.4563 113 77.7094 114 82.3063
9 27.8569 30 42.5299 51 57.937 72 66.9585 93 73.4563 114 77.9093 115 82.3063

10 28.151 31 44.9251 52 57.937 73 67.4351 94 73.4596 115 78.5959 116 82.4245
11 30.5997 32 45.7868 53 57.937 74 68.2733 95 73.7024 116 78.5959 117 83.5542
12 30.5997 33 45.8659 54 57.937 75 68.459 96 73.7024 117 79.3502 118 83.5542
13 32.7164 34 45.8659 55 58.1473 76 69.6934 97 74.3439 118 79.3502 119 83.5542
14 33.1869 35 46.2675 56 58.1473 77 69.6934 98 74.3439 119 79.3502 120 83.5542
15 33.2341 36 46.3718 57 60.1623 78 69.6934 99 74.3439 120 79.3502 121 83.5542
16 33.2341 37 47.0491 58 61.0241 79 69.6934 100 75.8404 121 79.6144 122 83.8185
17 34.1755 38 48.1804 59 61.1032 80 69.6934 101 76.0261 122 79.6144 123 83.8185
18 35.5403 39 48.5056 60 61.1032 81 70.1142 102 76.4049 123 80.1418 124 83.8185
19 35.5403 40 50.6266 61 61.1032 82 70.3804 103 76.4049 124 80.2345 125 83.8185
20 36.0093 41 50.6266 62 61.7947 83 70.4474 104 76.4049 125 80.2345 126 83.8185

Table 15. Absolute capacity for incremental budget changes ( =max|| 3s )

Equal PF

# A # A # A # A # A # A # A
0 11.3232 16 15.3896 32 24.9091 48 30.7793 64 35.5844 80 41.5151 96 45.2927
1 11.3232 17 15.3896 33 24.9091 49 30.7793 65 35.5844 81 43091 97 45.2927
2 11.3232 18 15.3896 34 25.555 50 30.7793 66 36.4922 82 43.091 98 45.2927
3 11.3232 19 19.5494 35 26.0308 51 30.7793 67 36.4922 83 43.09.1 99 45.2927
4 11.3232 20 19.5494 36 26.0308 52 30.7793 68 36.4922 84 43.091 100 45.2927
5 11.3232 21 19.5494 37 28.7273 53 30.7793 69 36.4922 85 43.091 101 45.2927
6 14.3637 22 22.4812 38 28.7273 54 30.7793 70 36.4922 86 43.091 102 45.2927
7 14.3637 23 22.4812 39 28.7273 55 32.9724 71 36.4922 87 43.091 103 45.2927
8 14.367 24 226464 40 28.7273 56 33.2121 72 36.4922 88 44.006 104 45.2927
9 14.3637 25 22.6464 41 287273 57 33.2121 73 36.4922 89 44.006

10 14.3637 26 22.6464 42 29.3373 58 33.9696 74 36.4922 90 44.006
11 14.6687 27 22.6464 43 29.3373 59 33.9696 75 39.0988 91 44.006
12 14.6687 28 22.6464 44 29.3373 60 33.9696 76 39.0988 92 44.006
13 14.6687 29 22.6464 45 29.3373 61 33.9696 77 39.0988 93 44.9623
14 14.6687 30 23.5517 46 30.7793 62 33.9696 78 39.1736 94 44.9623
15 15.3896 31 23.5517 47 30.7793 63 35.5844 79 39.1736 95 45.2927

Fig. 7 also shows the results for different track du-
plication limits in each section for both equal percentage 
flow (i.e. Fig. 7a) and no restriction on percentage flow 
(i.e. Fig. 7b). It should be noted that in Fig. 7b the mo-

del bypasses bottleneck issues but in contrast the model 
cannot bypass the bottleneck issues in Fig.  7a. This is 
clearly demonstrated by the branching of the lines and 
the common parts that occur beforehand.
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3.4. Time Varying Expansions
In practice, it is unlikely that the expansion of the RAI 
railway network can be performed at once, in one go. 
Hence, the application of the time varying capacity ex-
pansion model is necessary. That model was applied in 
this section. Our analysis first assumes that the track 
duplication cost is $100k per km of rail, and a budget 
of say $100 million is available, with $10 million avail-
able each year (i.e. over a period of ten years). These pa-
rameters are indicative of real life values but have been 
chosen by conjecture and estimation. The target capac-
ity is 50 trains. Intermediate capacity requirements are 

imposed in the following way: 
− 

=  
 10

F I
p

A A
A p . The 

time varying model was run for the RAI railway net-

work for different limits of the number of duplications 
in each section. It should be noted that for a maximum 
of one duplication in each section, the capacity model 
is infeasible. For example, it is impossible to reach the 
target capacity. For all other duplication limits, the target 
capacity was reached in three periods. The solutions are 
shown in Table 16. 

Table 16 shows no distinguishable pattern of cost 
and expenditure across the different periods. In fact, the 
same costs and spending were sometimes chosen (i.e. 

=max|| 5, 6, 9,10s ). The expansion plans were compared 
in order to see whether common sections were duplicat-

Fig. 7. Absolute capacity by budget increment: a – equal PF; 
b – no restriction on PF

Fig. 6. Absolute capacity versus budget increment:  
a – =max|| 1s ; b – =max|| 2s ; c – =max|| 3s
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Table 16. The expansion results (no restriction on % flow)

max||s Cost E

1 – –
2 2739 (990, 990, 759)
3 2673 (990, 990, 693)
4 2937 (990, 957, 990)
5 2970 (990, 990, 990)
6 2970 (990, 990, 990)
7 2310 (990, 957, 363)
8 2178 (957, 990, 231)
9 2970 (990, 990, 990)

10 2970 (990, 990, 990)
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ed, particularly for those duplication limits that resulted 
in the same total cost and spending. In summary, the re-
sults were all different, and the expansion plan is specific 
in each case. Some of the expansion plans are shown:

=max|| 2s :
Period 1: (6, 12, 13, 14, 15, 16, 18, 27, 29, 35, 37) × 
1 + (23) × 2;
Period 2: (2, 3, 7, 11, 17, 18, 22, 24, 25, 26, 27, 30) × 
1 + (4, 19) × 2;
Period 3: (2, 3, 9, 20, 22, 30, 35, 37) × 1 + (5) × 2.

=max|| 3s : 
Period 1: (6, 7, 18, 23, 26, 29) × 1 + (2, 4, 25) × 2 + 
(3) × 3;
Period 2: (2, 4, 5, 6, 25, 30) × 1 + (1, 19, 22, 23, 24, 
27) × 2;
Period 3: (7, 8, 20, 21, 27, 28, 29) × 1 + (30) × 2.

=max|| 4s : 
Period 1: 2(1), 3(1), 4(1), 10(1), 11(1), 12(1), 13(1), 
16(1), 17(2), 18(1), 19(1), 29(1), 30(1);
Period 2: 2(1), 3(1), 4(1), 5(1), 6(2), 7(1), 14(1), 
15(2), 18(2), 23(1), 30(1);
Period 3: 1(1), 4(2), 8(1), 18(1), 24(1), 29(2), 30(2).

=max|| 9s :
Period 1: 2(2), 3(1), 4(2), 5(1), 6(1), 7(1), 18(1), 
19(1), 21(1), 22(1), 23(1), 24(1), 25(2), 26(1), 27(2);
Period 2: 3(1), 23(1), 29(2), 30(3);
Period 3: 11(1), 12(1), 13(1), 14(1), 15(1), 16(1), 
17(1), 20(1), 22(1), 23(1), 29(1), 30(2).

The expenditure in each period (i.e. E) is shown in 
Tables 16–17. E is defined in units of $1000. The section 
that was duplicated in each period (i.e. S) is also shown 
in Fig. 8. After 3 periods no more expansion occurs and 

Fig. 8. The plan of expansion activity over time for =max|| 2s
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Table 17. The plan of expansion activity considering inflation

=max|| 2s =max|| 3s =max|| 10s

P E S E S E S
1 140 20 0 – 0 –
2 927 2, 3, 4, 18 927 2, 3, 4, 18 927 2, 3, 4, 18

3 954 4, 6, 7, 18, 27 954 4, 6, 10, 21, 22 954 3, 5, 6, 7,22, 23

4 981 2, 21, 23, 25 981 5, 13, 22, 23, 27 981 3, 4, 19, 23, 25
5 980 3, 5, 6, 10, 14, 26, 28 980 3, 7, 24, 25, 26, 28 952 1, 2, 8, 24, 26, 27
6 943 12, 13, 17, 22, 24, 27 989 2, 19, 20, 23, 24, 27 644 2, 4, 6
7 826 11, 15, 16, 19, 24 – – – –
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there is no more spending. It should be noted that the 
results in Tables 16 and 17 consider a fixed intermedi-
ate absolute capacity over ten periods, which are: [2059, 
2647.2, 2941.3, 3235.4, 3529.5, 3823.6, 4117.7, 4411.8, 
4705.9, 5000].

The price of infrastructure changes from year to 
year due to inflation and other economic forces. Incor-
porating inflation in the model is very useful and practi-
cal and a more realistic plan can be generated. The time 
varying model could address this possibility by adding 
a 3% increase to track duplication costs from period to 
period (i.e. ( ) ( )+

= ⋅, 1
|

,
|| | 1.03s p s pCt Ct ). Table 17 shows that 

the target capacity is reached in 6 periods and also ex-
penses are increased.

Conclusions 

In this article, analytical models have been used to ana-
lyse the capacity of the National Iranian Rail network. 
How to perform a sensitivity analysis to facilitate a 
more in depth analysis of capacity has also been dem-
onstrated. The analytical models were solved numerous 
times as part of that analysis. The sensitivity analysis was 
necessary because railway capacity is not a single value. 
Typically, the solution of the model is a single value and 
this is not representative of all possibilities in practice. 

In this paper, we have also proposed a track dupli-
cation component for the capacity model. In practice, 
capacity expansion is normally a manual task performed 
by consultants and requires the establishment of a set of 
permissible expansion scenarios. In this paper, we have 
compared that manual task to our automated model. 
The new method has been motivated by the difficulty of 
performing capacity expansion by hand.

The numerical investigations of the RAI network 
have shown that corridor A–C, A–D, and C–D have 
the highest capacity and this is clearly obvious from the 
network diagram. For example, those corridors have a 
greater number of smaller sections; this allows more 
traffic to flow. In practice, those three corridors con-
stitute the paths with the highest passenger and freight 
demand. 

Capacity expansion of this network was then ex-
plored and an iterative process was then proposed as a 
preliminary technique. While successful, this approach 
does not guarantee an optimal plan of expansion ac-
tivities. Hence, this paper has demonstrated a need for 
some formal model extensions such as track duplication, 
capacity expansion, etc. These extensions are necessary 
in order to speed up the analysis process, and to provide 
an autonomous process, as opposed to a manual process 
whereby an analyst has to alter various parameters and 
to define different cases. 

Static and time varying model were formulated 
and applied. The proposed model could be used to help 
planners increase the capacity over a specified time; the 
model can easily assess different budgets and costs in 
each period. The static model was introduced to identify 
the best sections to duplicate immediately to obtain the 
maximum capacity. The time varying model determines 

a plan over time and can consider things like inflation. 
A sensitivity analysis of the model was performed for 
specified limitation on the maximum number of dupli-
cations in each section. The expansion model can in-
clude other costs such as the cost of earth works and it 
is quite robust and generic.
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APPENDIX A

Table A1. Network data

# Corridor # section Length [km]
1 A–C 20 2550
2 A–D 18 2295
3 A–E 16 2320
4 A–F 18 3165
5 C–D 22 2625
6 C–E 20 2650
7 C–F 22 3495
8 D–E 14 1995
9 D–F 16 2840

Table A2. Section information (i.e. lengths)

# L # L # L # L
1 75 12 150 23 200 34 210
2 190 13 110 24 120 35 420
3 210 14 150 25 140 36 150
4 220 15 150 26 100 37 450
5 100 16 150 27 150 38 100
6 150 17 150 28 65
7 100 18 280 29 440
8 65 19 130 30 570
9 50 20 70 31 165

10 100 21 70 32 150
11 150 22 140 33 210

APPENDIX B

The following mix of trains was investigated:
η = [[0.0, 0.44, 0.56], [0.31, 0.45, 0.24], [0.86, 0.14, 0.0],
       [0.87, 0.1, 0.03], [0.39, 0.26, 0.35], [0.49, 0.36, 0.15],
         [0.0,0.44, 0.56], [0.31, 0.45, 0.24], [0.86, 0.14, 0.0] ].
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